Artificial Intelligence-Based Prediction of Key Textural Properties from LUCAS and ICRAF Spectral Libraries

نویسندگان

چکیده

Soil texture is a key soil property influencing many agronomic practices including fertilization and liming. Therefore, an accurate estimation of essential for adopting sustainable management practices. In this study, we used different machine learning algorithms trained on vis–NIR spectra from existing spectral libraries (ICRAF LUCAS) to predict textural fractions (sand–silt–clay %). addition, predicted the groups (G1: Fine, G2: Medium, G3: Coarse) using routine chemical characteristics as auxiliary. With ICRAF dataset, multilayer perceptron resulted in good predictions sand clay (R2 = 0.78 0.85, respectively) categorical boosting outperformed other (random forest, extreme gradient boosting, linear regression) silt prediction 0.81). For LUCAS consistently showed high performance sand, silt, 0.79, 0.76, respectively). Furthermore, (G1, G2, G3) were classified light boosted algorithm with accuracy (83% 84% LUCAS, These results, data, are very promising rapid diagnosis group order adjust agricultural

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extraction and acetylation of purified trypsin from bovin pancreas and study of some its physico-chemical properties

آنزیم تریپسین در شرایط قلیایی ناپایدار می باشد .و فعالیت پروتئولیتیکی تریپسین منجربه خود هضمی آن در جایگاههای خاصی می گردد. بنابر این آنزیمی با ناپایداری بالا محسوب میگردد. در سالهای اخیر موفق شدند که با ایجاد تغیرات شیمیایی با اضافه کردن فلزات خاص ، کلسیم و یا عمل استیلاسیون منجر به افزایش پایداری آنزیم تریپسین گردند. مطالعات در حال حاضر نشان می دهد که تریپسین استیله شده فعالیت آنزیمی خود را ...

15 صفحه اول

Prediction of GFP spectral properties using artificial neural network

The prediction of the excitation and the emission maxima of green fluorescent protein (GFP) chromophores were investigated by a quantitative structure-property relationship study. A data set of 19 GFP color variants and an additional data set consisting of 29 synthetic GFP chromophores were collected from the literature. Artificial neural network implementing the back-propagation algorithm was ...

متن کامل

Artificial Intelligence for prediction of porosity from Seismic Attributes: Case study in the Persian Gulf

Porosity is one of the key parameters associated with oil reservoirs. Determination of this petrophysical parameter is an essential step in reservoir characterization. Among different linear and nonlinear prediction tools such as multi-regression and polynomial curve fitting, artificial neural network has gained the attention of researchers over the past years. In the present study, two-dimensi...

متن کامل

Bayesian Prediction for Artificial Intelligence

This paper shows that the common method used for making predictions under uncertainty in AI and science is in error. This method is to use currently available data to select the best model from a given class of models-this process is called abduction-and then to use this model to make predictions about future data. The correct method requires averaging over all the models to make a prediction-w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agronomy

سال: 2021

ISSN: ['2156-3276', '0065-4663']

DOI: https://doi.org/10.3390/agronomy11081550